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ABSTRACT

A distributed storage system can meet the increasing requirements
of consumer storage capacity. It also enables effective access to data
across multiple host devices at once. However, existing distributed
storage solutions require configuration and understanding of the
underlying system, which is not suitable for consumer use. This
paper describes and implements a simple, automated distributed
storage system. It encodes the stored data using network coding
techniques, to enable efficient and simple data retrieval for use.
The designed protocol is evaluated against existing solutions on
two fronts: SMB 2 for network transfer efficiency, and RAID for
storage redundancy. The proposed design is found to have design
advantages, though the reference implementation requires further
optimisation to be effective.
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1 INTRODUCTION

Network coding is a useful technique to allow for data redundancy
and effective reconstruction, as well as efficient distribution [16].
Network coding can be applied to the data for distribution and
storage amongst the nodes in the system, which enables for storage
redundancy, and reconstruction of the data during use. Notably,
network coding does not depend on any specific piece of data, and
instead abstracts it into a series of symbols, each of which contribute
to decode the original data. These properties make it a particularly
useful tool to apply to a distributed storage system.

Distributed storage systems are not used in consumer environ-
ments, as their complexity and scale makes them largely unsuitable
[4, 5]. Distributed systems are becoming increasingly common, in
particular with the adoption of Internet of Things (IoT) devices [15].
IoT devices will apply presure to cloud storage providers, which
could be relieved by effective and distributed storage on the devices
themselves.

Conversely, Network Attached Storage devices are an acceptable
consumer solution, and they have been made relatively simple to
use [5]. Distributed storage systems would also be an effective
consumer solution, if any viable options existed. Applying the same
simplicity to a distributed system, will better enable consumer use.

This paper outlines a system that is capable of automated discov-
ery, configuration, and management of a distributed storage system
within a consumer networking environment.

The system has been named ’adar’ as it is simple and easily pro-
nounceable. The choice in name has very little bearing on the actual
use of the system, although a name is required for categorising the
advertisement of the service.

2 LITERATURE REVIEW

Within the space of distributed storage systems, both network
coding and automation have been explored in various aspects sepa-
rately. No system has yet investigated a holistic of an automated
distributed storage system using network coding.

2.1 Network coding with distributed storage

Network coding has been used to ensure the storage of data in a
peer-to-peer distributed network where nodes cannot be guaran-
teed to be online at all times [10]. The paper weights the random
linear coding based on the priority of the data to be stored. They
demonstrate Priority Random Linear Network Coding to be an
effective solution, and enable partial data recovery of prioritised
data when losses occur.

Network coding can also be implemented such that multiple-
node failures are tolerated and repaired [16]. This has been shown
to require a minimum amount of bandwidth to reconstruct data,
when effectively collaboration occurs. This demonstrates that net-
work coding can achieve bandwidth-effective data distribution from
multiple source nodes to a single node for data storage.

2.2 Automation with distributed storage

Distributed storage is a useful technique for designing a system that
best matches a use case, however the complexity of configuring
such a system can be undesirable or even infeasible. An additional
monitoring system can be used to adjust parameters automatically
to find the most optimal configuration during runtime [10].

Furthermore, the design of storage tiers and assignment of data
to tiers is a time-consuming administration task when using a
heterogeneous storage system. This process can be automated by
suitable algorithms during runtime, where the system is adapted to
its use [12].

Whilst bandwidth is typically a limiting factor during data trans-
fer over a network, the capacity of the transmitting and receiving
node are also key factors. Both upload and download times of a
client can be improved by distributing data to multiple storage
nodes directly during the transfer [11].

Ensuring the integrity and security of data in a distributed system
is an important aspect to consider during distribution, particularly
with regards to privacy. SSSFS is a reliable method for adding au-
thentication at the virtual file system layer [17].

3 BACKGROUND

There are two key concepts to discuss as background for understand-
ing the results and comparison of against the proposed protocol.
These concepts are RAID, and network coding.



3.1 RAID

A Redundant Array of Inexpensive (or Independent) Disks (RAID)
uses multiple disks together to achieve higher reliability and poten-
tially higher performance [13]. RAID has several different modes of
operation, and is configurable by the end user. It requires the host
Operating System to support a special disk access driver, which
allows the RAID controller to present as a single disk to the Operat-
ing System. It then routes disk operations to the relevant individual
disks, according to the selected mode.

RAID provides data redundancy in the event of hardware disk
failures via several different modes, each of which also impact
performance positively or negatively. It does not distribute data
beyond a single host, nor protect from hardware failures of the
host.

3.1.1  First level RAID. The simplest mode is to mirror the available
disks, such that disk operations to one disk are exactly performed
with the other, simultaneously. Thus, in the event of a failure of
either disk, data is not lost. This provides no performance benefit,
though does provide a certain level of data redundancy.

3.1.2  Second level RAID. An alternative mode is to use a Hamming
code as an Error Correcting Code over each bit of data. A portion
of the disks are used for storing bits, whilst a portion store the
corresponding Hamming Error Correction Code.

3.1.3 Third level RAID. This is similar to the second level RAID,
except that data is distributed at the byte level. Hamming Error
Correcting Codes are also used, and the total data is distributed
over several disks.

3.1.4  Fourth level RAID. Data is distributed at the byte level through-
out the data disks, with a single disk dedicated to providing a parity
check for the data bytes.

3.1.5 Fifth level RAID. Data is distributed at the byte level through-
out the data disks, with a parity check. However, the parity byte is
also distributed across the disks, such that no one disk is dedicated
to storing all parity data.

3.2 Network coding

Network coding is a technique of encoding data to improve the
throughput and efficiency of a network. Linear network coding uses
linear combinations of data to produce symbols that can be transmit-
ted across a network [9]. The linear combinations are chosen and
use coefficients to generate a single symbol that contributes to the
data bytes as specified by the coefficients. With a sufficient number
of symbols, along with independent combinations of coefficients,
the original data can be decoded.

If symbols are lost, such as via dropped packets during transmis-
sion, then new and unique symbols can continue to be generated
and transmitted. This enables the recipient to decode the data, with-
out any coordination of which data was lost in transit.

This can further be improved by randomly selecting the coef-
ficients used for encoding symbols, resulting in Random Linear
Network Coding (RNLC) [7]. When using RNLC, the coefficients
used for each symbol do not need to be transmitted with the sym-
bol, which significantly reduces transmission overhead. Instead, the

seed used for the pseudorandom number generator can be transmit-
ted along with the symbols. This enables the recipient to regenerate
the coefficients, and then apply them to the symbols to decode the
original data. This also removes the necessity to carefully chose
appropriate and independent combinations of coefficients, resulting
in a simpler algorithm.

However, it can still be useful to intentionally bias or choose the
coeflicients. For example, biasing the chosen coefficients towards
the start of the data enables the receiver to start decoding the data
immediately. This reduces the restriction of requiring all symbols
to decode the data, and can allow for it to be streamed more easily.

4 DESIGN

When designing and specifying a new communications protocol, it
is important to begin with a clear set of design concepts and goals
to guide each small decision. Referring back to these concepts and
goals throughout the design and implementation phase is key to
ensuring that a robust and fit-for-purpose outcome is found. As
such, the specific design concepts and goals will be briefly discussed.

4.1 Internet connectivity

Whilst internet infrastructure can provide useful tools and systems,
such as certificate chains for secure identification, it also adds an-
other external dependency. Particularly as all other aspects of this
system are inherently suitable for local area networks, introducing
internet connectivity as a dependency is not suitable for the reliable
operation of the system in a diverse set of networks. A key design
goal is to enable the use of the system between two or more peers
via a direct link-local connection, where there is no dedicated net-
working infrastructure such as a router, DHCP server, or internet
gateway.

4.2 3-step process

A key factor of widespread technology adoption is the ease of use,
which must be addressed early in the architectural design to create
a simple and minimal user interaction surface. Successful existing
technologies such as Wi-Fi and Bluetooth utilise a 3-step process:
list, select, confirm. Taking Wi-Fi for example, a user navigates their
system interface to list the available networks, selects their desired
network, and confirms by entering the password to authenticate.
Compared to Bluetooth, the user navigates the system interface
to the list of available devices, enables pairing mode on both de-
vices, and confirms the same sequence of numbers is displayed on
each device (or enters the appropriate pin). Thus, the three key
concepts of a user-friendly list of available options, a simplified
connection process, and user-verifiable authentication are essential
to widespread adoption.

4.3 Peers

Each storage-capable node is defined as a peer, and there is no
provision for a non-storing peer. Thus, each node in the network
must be capable and willing to store data, eliminating the potential
for nodes to “leech” and only ever access data. This ensures that all
nodes collaborate to store data, effectively eliminating the possi-
bility of a network of peers where the data is solely stored on one
peer. This would be detrimental to the total storage capacity of the



network, as well as eliminating the advantage of distributed data
storage for both efficiency and resiliency. Furthermore, it simpli-
fies the design and implementation of the protocol, as there is no
distinction in function from one peer to another.

4.4 Network infrastructure

Some surrounding network infrastructure is assumed to be present,
though further requirements upon the infrastructure is not pre-
sumed. For example, there is no distinction between IPv4 and IPv6
connections between clients, and all clients should be supportive of
at least one, preferring IPv6 where possible. Furthermore, routing
capabilities are not assumed, although hostnames are preferred
where possible. This ensures that the system can operate on net-
works managed at an enterprise level, through to unmanaged home
consumer networks, through to link-local connections between
two peers. As such, peers should expect to be connected to, and
connect from, any available network interface, using any IP version,
by way of hostname or address. This further extends the flexibility
of the system, ensuring that it can be adopted in several different
environments.

4.5 Continuous discoverability via advertising

A key aspect of configuring communication services is the requisite
parameters used to establish an initial connection. This task can
be effectively removed from the user’s responsibility by enabling
each service to advertise itself and methods to connect to it. Both
Wi-Fi and Bluetooth have such advertising methods in-built to
their architecture, such that users need only select the desired
network or device from a list of human-readable names. Wi-Fi is
typically discoverable by default, with an optional hidden mode,
whilst Bluetooth is not discoverable by default, requiring explicit
user action to enter a discoverable pairing mode. As devices are
expected to be non-portable and connections should be long-lived,
it is suitable for each peer to be continuously discoverable, with
explicit user action required to allow for a new pairing.

4.6 Automatic connections

Furthermore, as peers are expected to be non-portable, they should
always be online and available for connections. As such, connec-
tions should be automatically established if a paired peer is discov-
ered. Especially as there is no design limit for how many peers can
be interconnected at once like with Bluetooth, the user should not
be involved in explicitly initiating a connection or disconnection
between peers. The user should be able to turn on and off the peers
at will, and connection and disconnection is automatically incorpo-
rated into these events. If peers continue to be discoverable, and
are paired, they should be connected, minimising the possibility of
peers being paired and available not functioning as a whole system,
which would cause undue confusion for users.

4.7 Minimising state in operation

To minimise complexity and test coverage, as well as potential
corner cases, the system is designed to be stateless during opera-
tion. Initial setup processes, such as pairing and connections, are
necessarily stateful, however subsequent operations are stateless
and/or contained within a single actionable operation wherever

possible. This enables the system to be relatively stateless in gen-
eral operation, such that it should not accumulate errors over time,
nor require regular restarts. Minimising the possibility of errors
through architectural design is key for the ongoing usability and
adoption of a technological system.

4.8 Minimal network structure

Peers do not maintain, nor attempt to build, an understanding of
the overall network structure. Their only knowledge is maintaining
a list of currently and directly connected peers, for which they can
make immediate use of. Thus, the only possible inter-peer connec-
tions are either inbound, for which a request should be serviced or
actioned, or outbound, where a request is expected to be serviced or
actioned. Whilst this could lead to potential inefficiencies, attempts
to rectify the situation with a more holistic view of the network
would require either a governing peer to orchestrate connections
flows, or for each peer to build their own view of the network
and attempt to collaborate on a shared understanding. The former
approach is undesirable due to the in-built centralisation, which
undermines the working of a generalised distributed system. The
latter would necessitate additional communication between peers
that is not directly related to fulfilling user activities and is thus
unnecessary and inefficient. It also adds potential complications
and failure modes, which should be avoided in the architectural
design of a system.

4.9 Design scalability

As the system does not distinguish between any two connected
peers, it is theoretically scalable from as few as two peers, until prac-
tical and implementation-specific limits are reached. This further
adds to the ease of adoption, as there are no specific requirements
for number of peers, nor requirements on the amount of storage
that each peer has or offers.

4.10 Limit of design scope

Whilst it is tempting to provide a complete system in its totality,
it is equally important to limit the scope of the project such that
it does not become too controlling or limiting of other implemen-
tations and aspects of computing. Hence, the design scope of the
system minimises any portions that replicate the responsibilities of
file system, particularly access control and permissions, as well as
advanced techniques for efficient storage and management of data.
The scope is intentionally restricted to network communication,
and as little as possible on how that data is stored on each peer, as
those aspects should be left to each implementation to implement
in an optimal manner for their environment.

4.11 Transparent security

A final requirement to be included in the architectural design of
the system is incorporating industry standard and up-to-date se-
curity algorithms for key communications. However, this security
should be entirely transparent to the user, as correctly designing
and implementing a secure system should not fall to the user’s re-
sponsibility. As such, the system is designed to incorporate security
between each peer, even from the first communication between
two unpaired peers.



5 IMPLEMENTATION

A reference implementation has been developed alongside the de-
sign, to both inform and verify design decisions [1]. Whilst the
reference implementation seeks to be feature-complete, it does dif-
fer from the design schema in several places, which will be noted.
As such, its usefulness was primarily during development and test-
ing of the system concept, and is not expected to be identically
replicated in practice.

The implementation is written in Python 3.11, and designed to
use open-source standard libraries and resources wherever they
are available, to minimise development time and maximise system
compatibility. Furthermore, the system should be compatible with
Windows and Unix-compatible systems, and interoperable between
them with no loss of features.

The network coding library was selected from amongst all open-
source implementations of network coding on GitHub. The list was
compiled using a search for "network coding", as well as all public
repositories tagged with "network-coding" or "networkcoding". The
available implementations were evaluated on several factors, includ-
ing the ease of integration with the Python programming language,
the difficulty of modifications and extensions if required, and the de-
sign purpose of the implementation. Several were eliminated due to
incompatibility with Python. Others were only simulations of net-
work coding for testing and evaluation, and not fit for integration
into a working environment.

The "simple-nc" library was chosen as it is native Python code
and thus fully interopable [6]. It was also intended to be used as
a network coding library within a working environment. Finally,
it was a feature-complete RNLC library, and only required minor
extensions to be fully integrated into the rest of the reference im-
plementation. Overall, this enabled effective development of other
areas of the reference implementation.

5.1 Initialisation

The system can be split into three separate modules: storage back-
end; network communication; and service advertisement.

The storage backend is used for communicating with the backing
file system. It stores file data as encoded symbols, file metadata,
as well as persistent data for the peer, such as the public/private
key pair for encrypted communication. For Windows system, the
Windows Projected File System was used to intercept file operations
and present files to the user and applications in a seamless manner.
For Unix-compatible systems, the Filesysem in USErspace (FUSE)
can be used to present a mount point for the user and applications to
interact with. This module is the first to be initialised upon starting
the system, as any errors with it would prohibit the rest of the
system from functioning correctly. It is also imperative that data
integrity is maintained, as attempting to continue instead could
lead to data corruption.

The network communication module consists of two parts: a
TCP server; and a UDP listener. The TCP server is used for most file
operations, and encrypts traffic using the public/private key pair
generated by the system. This TCP server should be available on all
network interfaces, on any network address, and respond to IPv4
and IPv6 clients. The UDP listener is used for transferring file data
using a symmetric encryption key established for that connection

session. It should be available on all network interfaces, on any
host address, and respond to IPv4 and IPv6 clients. This module
must be fully operational for any useful network communication
to occur, and so must be intialised and ready before the service is
advertised.

The service advertisement module is the last to be intialised, as
it signals that the system is fully operational and ready to engage
in communication with peers. Additionally, ceasing the advertise-
ment of the service can be used to indicate that it is stopping, and
that relevant peers should disconnect. This ensures that peers will
only attempt connections to a ready and working service, and that
any errors or faults of one peer do not affect peers by disconnect-
ing as soon as possible and rejecting further communication. The
only responsibility of this module is to provide and maintain a
DNS-SD or mDNS service listing. The fields and properties of this
advertisement are described and specified in the next section.

5.2 Advertisement

The first stage of network communication is to advertise the avail-
ability of the system, which is performed once it has initialised
all systems and is ready to accept connections. Advertisement is
performed by registering a service via DNS-SD or mDNS, which
is an industry-standard implementation of zero-configuration net-
working [2, 3].

DNS-SD requires that services are categorised by a combined
type and protocol. Each device that advertises must also provide a
uniquely identifying prefix.

Field ‘ Value
Service _adar._tcp.local.
Name Hostname | Service
Port 6780
Server Fully-qualified domain name
Addresses IPv4 | IPv6

Table 1: DNS-SD and mDNS advertised fields with values

The service field contains the unique categorising identifier for
this system, both by name and by protocol type. The top-level
domain is the local domain, as this is required for all local area
network services.

The name field is a concatenation of a user-friendly device host-
name along with the service field. The concatenation must be per-
formed with a . delimiting character, as with DNS domain names.
The hostname will be presented to the user during pairing and con-
nections, and so it should be user-readable and correctly identify
the peer. It is acceptable to use the hostname as defined by the host
OsS.

The port field is specified to use a text representation of 6780.
This port was chosen as it is currently unassigned by JANA.

The server field must be a fully-qualified domain name that can
be used to connect to the peer.

The addresses field must contain a list of IPv4 and IPv6 addresses
that can be used as a fallback to connect to the peer, if the fully-
qualified domain name or hostname cannot be used appropriately.



Along with the direct fields specified in Table 1, custom text
properties are also advertised as specified in Table 2, which include
key information for the inital pairing and connection process.

Property ‘ Value
Description Distributed storage system
Key Base64-encoded public key
Versions Comma-separated supported versions

Table 2: DNS-SD and mDNS advertised custom properties
with text values

The description property should contain a brief description of the
service, which may be presented to the user depending on which
DNS-SD or mDNS service browser they use.

The key property should contain a base64-encoded text represen-
tation of a public key which can be used to encrypt TCP traffic to
this peer. The key should be generated by the latest available secure
libraries, and is left to the specific implementation to determine. It
will be used as a public/private key pair for TCP communication,
and to help mitigate a machine-in-the-middle attack via imperson-
ation. The usage of this identifier will be specified in the pairing
and connection process. This key should be generated once and
stored securely throughout system restarts, though a total reset
should cause it to be regenerated. The reference implementation
does not encrypt TCP traffic, and uses a Universally Unique IDenti-
fier (UUID) instead.

The versions property should contain a comma-separated list of
supported version numbers. The peer should support communica-
tion with each of the listed version numbers, though no restriction
is placed on maximising this list. Rather, it is preferred to maintain
a minimal list to ensure that implementations are kept up-to-date
and secure.

5.3 Pairing and connecting

After a peer advertises itself and is discovered, a compatibility check
occurs using the advertised versions. If there are any compatible
versions, the highest (latest) compatible version number will be
selected for use. The protocol corresponding with this version will
be used henceforth for all communication.

Once compatibility is established, a check occurs to confirm
whether the peer has been paired. This check involves a SHA3-256
hash of the peer’s hostname, public key, and supported versions.
These are converted to their string representation and concatenated,
with the resultant hash persistently stored on the host device. The
peer’s hostname is used as an identifier when associating hashes.

It is important to verify that the peer is not impersonating an-
other peer by using their advertised information, hence several
advertised parameters are involved in this process. This step also
ensures that any changes in key peer information (even intention-
ally) require the explicit approval of the user via pairing again. For
example, if the supported versions change, the user must explicitly
acknowledge this via a pairing process, which should help mitigate
against version downgrade attacks.

If the peer is not paired, explicit user confirmation of the pair-
ing is requested. If this is confirmed, the pairing request can be

transmitted to the other peer. A TCP connection is opened to the
peer’s fully-qualified domain name (FQDN) on port 6780 as pro-
vided in the advertised fields. Once the connection is established,
the resolved address is confirmed to be amongst the advertised
addresses to mitigate a machine-in-the-middle attack and ensure it
is a direct connection. If the FQDN does not resolve to an address
or connection otherwise fails, the advertised addresses are used
instead, attempting IPv6 addresses first.
Table 3 lists the format of the Pairing command.

Value ‘ Example
Pair command value string 1
Colon

Comma-separated list of versions | 1,2
Table 3: Pair request command components

The peer can choose to ignore this request, which should timeout
after 30 seconds, or respond positively or negatively. A declining
response would be a 0, whilst a confirming response would use a
compatible version number to use for the rest of the communication
session. The TCP connection is kept open once pairing is confirmed,
to facilitate further communication for this session.

Once pairing is confirmed, the SHA3-256 hash of advertised pa-
rameters should be persistently stored locally, as described above.
This concludes the pairing process, and once complete the connec-
tion process immediately begins.

If connecting to a peer that has previously been paired, a TCP
connection is established using the same process as for pairing. If
the peer has just been paired, the connection is reused and persists
throughout the session. Just as for pairing, the supported versions
are sent and a compatible version is selected. If no version is found,
or the connection request is refused, a 0 is returned instead.

Following a connection request, a Diffie-Hellman key exchange
occurs to establish a secure shared key. This begins by sending
a key request, along with the public key component encoded in
base64. The format for this message is described in Table 4. The key
is generated from MODP group 16, with a length of 1024 bits [8].

Value ‘ Example

Key command value string | 3

Colon :

Base64 public key SGVsbG8gdGhlemUh...

Table 4: Key request command components

The peer shall respond with their own public key, without any
encoding. This enables both parties to establish a shared key in
a secure manner, though it is still vulnerable to machine-in-the-
middle attacks. To aid in mitigating this, a similar mechanism to the
Bluetooth Core specification is used: the first two bytes of the newly
established shared key are displayed to the user in their decimal
representation. This results in 6 digits which can be cross-checked
manually by the user to ensure that they match. If they do not match,
the user should be able to abort the connection. A mechanism to
abort is not included in the reference implementation.



Once the TCP connection has been established and a secure key
is shared, the UDP connection can be established on port 6781.
The UDP connection should use the same protocol as the TCP
connection, and equally prioritise the FQDN over choosing an IP
address. This leads to an automatic process to ensure that all user
data is synchronised between the two peers.

5.4 TCP command format

All TCP commands are UTF-8 encoded strings, which begin with a
decimal value for the command being sent. All command contents
are encrypted using the advertised public key of the peer to which
they are being sent. A valid TCP command is concluded with an
unencryted Unicode newline character.

The command decimal value is separated from the rest of the
transmitted data by a Unicode colon character. Following this are
the appropriate parameters and additional values as necessary,
specific to each command, if any. Each parameter is separated using
a Unicode Information Separator One character.

Table 5 lists all commands and their decimal byte values for
reference. Note that Read, Data, and Write are transmitted over
UDP and follow a different encoding format.

Command | Decimal value
Pair 1
Connect 2
Key 3
Sync 4
Ready 5
Disconnect 6
Create 7
Rename 8
List 9
Read 10
Data 11
Stats 12
Wirite 13
Remove 14

Table 5: Byte values (in decimal) for each protocol command

File paths are represented as UTF-8 strings, where the root point
of the available files is denoted as ’/’, and subsequent directories
are delineated by further °/° characters. There is no explicit distinc-
tion between file and directory, as the whole path is always used.
Relative paths are not permitted. An example is provided in Table
6.

Encoded file path
/directory/subdirectory/file.txt
Table 6: Example file path

5.5 Synchronisation

After establishing a new connection session, the two peers must
ensure that user data is appropriately synchronised between them.

To do this, a listing of the root directory is requested of the re-
mote side. The listed files and folders are compared to the local
side, with directories and files created as necessary. Once a file is
created, the contents are also requested. If the file already exists,
the modification time is compared, with the latest file contents
requested.

To start this process, a Sync request is sent, as described in Table
7. The peer should respond with a 0 byte if they are not able to con-
tinue with the initialisation, at which point a disconnection occurs.
They may stall for up to 10 seconds until they have established a
TCP connection, a shared key, and a UDP connection. Once this
is confirmed, they should respond with a 1 byte to confirm their
readiness.

Value ‘ Example
Sync command value string | 4
Colon

Table 7: Sync request command components

For each subdirectory, this process is repeated. Once complete,
the peer is able to transition to a Ready state, and informs the peer
of this as per Table 8. General file operations for user interaction
can now occur.

Value ‘ Example
Ready command value string | 5
Colon :

Table 8: Ready state command components

5.6 File operations

Several high-leve file operations are supported. They include: di-
rectory listing; file creation; path renaming; file stats; and path
removal.

5.6.1 List. The List command requests a listing of the folders and
files for a given path. It expects folder names to be delineated by the
Unicode Information Separator One character. File names are also
delineated using the Unicode Information Separator One character.
Folders are transmitted first, separated from the files by a colon.

Value ‘ Example
List command value string | 9
Colon :

Table 9: List operation command components

5.6.2 Create. The Create command informs peers of a user cre-
ating a file or folder for a given path. If a file is created, the type
indicator is set to 0 and the seed is also transmitted. If a directory is
created, the type indicator is set to 1 and seed parameter is 'None’.
The peer sends an empty response as confirmation.



Value ‘ Example
Create command value string | 7

Colon :

Path /New folder
Type 1

Seed None

Table 10: Create operation command components

Value ‘ Example

Rename command value string | 8

Colon :

Old path /New folder

New path /My fancy new folder

Table 11: Rename operation command components

5.6.3 Rename. The Rename command informs peers of a user
renaming a path. The old and new paths are sent as parameters.
The peer sends an empty response as confirmation.

5.6.4 Stats. The Stats command requests file metadata information
from peers. The given path is sent as the parameter. It expects four
integer values in return: size; creation time; modification time; and
access time. The time values are measured in nanoseconds since
the epoch, 00:00:00 UTC on 1 January 1970, as an integer. The size
is an integer count of the bytes of the file data. The peer should
respond with the requested information as stored in its metadata.

Value ‘ Example
Stats command value string | 12
Colon :

Path /file.txt

Table 12: Stats operation command components

5.6.5 Remove. The Remove command informs peers of a user re-
moving a path. Any children of the path should also be removed.
The peer sends an empty response as confirmation.

Value ‘ Example

Remove command value string | 14

Colon :

Path /My fancy new folder

Table 13: Remove operation command components

5.7 Data storage

The key innovation lies in how user data is stored and transmitted.
Network coding is applied to the user data for transmission, as
described by the UDP command format in section 5.8. However,
network coding is also separately applied to the user data for per-
sistent storage. The encoded symbols are stored, along with the
pseudorandom number generator seed required to generate the

corresponding sequence of coefficients for the persistently stored
symbols. This process can be known as storage coding, as it applies
encoding to data for efficient storage.

Once the user data is encoded as symbols, it can be effectively
apportioned, such that each peer only stores a subset of the total
number of symbols. This allows for the data to be easily distributed
over an arbitrary number of peers, as well as recalled from an
arbitrary number of peers without coordination.

Furthermore, as the symbols are stored in an encoded form,
it is trivial for a peer to service a read request, as it only needs
to read the bytes and transmit them. All the computational and
memory burden for gathering enough symbols to decode, as well
as performing the decoding operations, is done by the requesting
peer. Thus, the distribution of load is only for each peer that needs
to read data.

However, as each peer needs to generate and store a unique
sequence of the symbols, when writing files, the entire unencoded
file needs to be sent to each peer, and each peer encodes and stores
a subset of symbols. Thus, the cost of writing is equally burdening
for each peer.

The amount of symbols that each peer should store is to be
determined by the peers themselves. If they have a significant
amount of storage capacity available, they may choose to store
more symbols, whilst if capacity is low, they may store less. In
general, each peer should store a portion of a file’s total size as
symbols. This amount can be determined by Equation 1 describes a
method of calculating it, where n is the number of connected peers.

n

n+1 W

As an example, with a network of only two peers, each should
store approximately 0.67 of the total file size as equations. This
would lead to a 50% reduction in file storage compared to simply
replicating the complete file contents on each peer. It also only
requires a third of the file size to be transferred to each peer at
runtime to decode the whole file contents.

The precise equation and amount of symbols to store for each
file is left to the specific implementations to determine and tune. It
does not need to be consistent for all files, however. For example,
files that are frequently accessed could be store in totality on the
host, to avoid network traffic adding latency. Meanwhile, larger
files accessed less often can be distributed amongst the peers and a
minimal amount kept on the host.

This is a careful trade-off to balance, as storing too little could
lead to data loss when not enough symbols can be retrieved from
the network of peers. However, there is incentive to reduce the
amount of symbols such that the total amount of storage capacity
required is minimised.

Note that the reference implementation uses a fixed equation
of s X 2 where s is the file size. This ensures that even with only
one peer in the network, the entirety of a file is guaranteed to be
available, which enabled rapid and effective testing.

5.8 UDP command format

Data read requests are sent over a UDP connection, as well as
data in response to a read, and data to be written. The initial read
request is a UTF-8 encoded string and should be encrypted with



the peer’s public key as for TCP transmissions. It is terminated by
an unencrypted newline character as well. However, it differs from
the TCP tranmissions in that the selected command is not sent as
a string representation, but rather as a single byte, whose literal
value is equivalent to the command. All numbers are encoded as
big-endian, regardless of host.

Table 14 details the format of the read command request. Note
that a colon is not included, as it is not needed to separate the
command from the path (the command is always a single byte).
Parameters are separated by the Unicode Information Separator
One character as with TCP, e.g. after Path, and after Skip.

Value ‘ Example
Read command byte | 0xf

Path /file.txt
Skip 0
Symbols 10

Table 14: Read operation command components

Once a read request is received, the peer will read the requested
number of symbols from the requested path. This is a simple byte-
for-byte translation, where the Skip and Symbols parameters are
equivalent to a file seek operation, and reading a specified length,
respectively.

The actual transmission of data uses a different and completely
unique format, which is discussed in detail in section 5.9.

5.9 Data transmission

The unique format for data transmission is sent over the UDP
connection on port 6781. It is used for data servicing a read request,
and for data that is to be written. When servicing a read request,
the data is the encoded symbols as read from the persistent storage
on the host. When the data is to be written, it is the complete file
data without any encoding.

Regardless of the payload being delivered, the process applied
to it is the same. The data is split into appropriately sized packets,
e.g. 1024-byte chunks. The payload for each chunk is individually
encrypted using the secure shared key established for that session.
Once encrypted, the ciphertext is encoded as one symbol. This
symbol, and associated metadata, is transmitted over the network
as bytes. Each operation will be discussed in more detail separately.

5.9.1  Encryption. The XChaCha20-Poly1305 is selected as the lat-
est and most secure symmetric-key encryption algorithm [14]. The
key used for encryption is the last 32 bytes of the shared secure key
that was established using Diffie-Hellman when initially connect-
ing this session. As a new key is established for every connection
session, the limit of 256 GB of data encryption is only for each ses-
sion. A new and random 24-byte nonce is generated for each chunk
of data to be transmitted, and an unlimited number of chunks can
be securely sent each session.

The cipher is updated with the UTF-8 encoding of the file path,
which is used as Additionally Authenticated Data. This can be used
later to verify that the path has not been tampered with whilst in-
flight. The non-symbol data is not encrypted, as this allows network
devices to read and parse the packet, if configured to do so. This

could enable these network devices to more efficiently transmit
the data packets, as they are able to identify data flows, and can
perform further network coding on the symbols whilst in-flight.
This would not be possible if the entire packet were encrypted.

The outputs from the encryption step includes the ciphertext,
as well as a 16-byte tag to ensure that the encrypted data has not
been tampered with.

5.9.2  Network coding. The entire ciphertext is used to generate
a single symbol. If the data has been split into several chunks,
each chunk is encoded as a single symbol. For example, when
transmitting 4096-bytes of encrypted data, it could be split into four
1024-byte chunks, which are encoded into four 1024-byte symbols.
This results in a packet containing one symbol, as losing one packet
results in one symbol being lost and requiring some retransmission.

The encoder uses a fixed pseudorandom number generator seed
in the reference implementation, and there seems to be little mo-
tivation to change it dynamically. It could be possible to establish
a fixed seed for a single session, such that there is some variabil-
ity. This seed could be determined from the secure shared key as
generated from establishing the connection.

Once the ciphertext has been consumed by the encoder, coded
symbols can be produced. The manner in which they are produced
is key to the performance of the protocol for larger file sizes. It is
beneficial to begin with a sequence of lightly-coded packets, whose
coefficients are not randomly chosen. In fact, the data can be trans-
mitted byte-for-byte, as it is not expected that data losses should
occur for most transfers. This allows for zero additional packet
overhead when no packet losses occur, and also ensures that data
is ordered accordingly. Thus, when the lightly-coded packets are
received, they can be immediately decoded. Thus, their contents
can be processed when only a part of the total symbols have yet
been received. This is a variation on the otherwise standard imple-
mentation and usage of Random Linear Network Coding (RNLC),
which may be called Semi-Random Linear Network Coding.

In ideal network conditions, where no packets are lost, it is equiv-
alent to no encoding at all. However, when packets are lost, new
symbols can be immediately generated and transmitted without de-
lay. These newly generated symbols should follow RNLC, such that
they contribute to multiple symbols, and can effectively account
for the lost data.

The reference implementation does not support transmitting
multiple packets of data, nor splitting the data into chunks. It also
does not detect or support the retransmission of lost packets, though
this would be trivial to add without modifying the protocol in any
way.

5.9.3 Transmission format. Several additional pieces of metadata
are required to be transmitted alongside the encrypted and encoded
data. These are listed in Table 15.

This can be concatenated together and sent over the network as a
UDP packet to the desired peer. The important benefit of the double-
encoding scheme with encryption in between is that it enables
network coding for transmission, whilst maintaining encrypted
data for storage coding.



Value Example | Length (bytes)
Data or Write command byte | 0xb or 0xd 1
Path /ile.txt variable
Unicode separator ox1f 2
Total packets 0x1 4
Data length 0x256 8
File seed 8
Nonce 24
Coeflicient 0x1 4
Payload length 0x256 2
Payload variable
Tag 16
Unicode newline \n 1

Table 15: Data transmission components

5.10 Disconnecting

When the service is about to stop, a disconnect service may be sent
to preemptively inform peers and ensure a graceful exit from the
network. After sending a disconnect command, the TCP connection
can be closed for writing. After receiving a disconnect command,
the TCP connection should be finished and closed. The peer is
expected to stop advertising shortly, and once this occurs they can
be removed from any state.

Value ‘ Example
Disconnect command byte | 6
Colon :

Table 16: Disconnect state command components

5.11 Stopping

When stopping the service, the modules are stopped in the reverse
order from their initialisation, and for the same reasons. If any peers
are connected when stopping the network communication module,
a Disconnect message is sent to each connected peer.

6 RESULTS

As the reference implementation is a proof-of-concept, it lacks ef-
fective optimisations, and so is not comparable in terms of compute
or memory performance to existing protocols. However, as the
protocol is only dependent on two different operations for reading
or writing, the performance can be theoretically evaluated to deter-
mine any inherent limitations. A key limitation is file operations,
such as reading and writing user data from the underlying storage
system. This is dependent on the filesystem and Operating System
chosen, as well as the storage hardware, and is irrespective of the
networking protocol.

The other key limitation is the encode and decode performance
for coding the user data. Existing network coding implementations
can demonstrate effective performance already, using consumer-
grade hardware [18]. Use of Single-Instruction-Multiple-Data tech-
nologies on mid-range consumer processors leads to significant
performance improvements, whilst mobile phone processors are

comparable to the baseline implementation. This shows that a suit-
ably optimised implementation could be viable on consumer hard-
ware, and even on mobile platforms.

Hence the only reasonable comparison that can be quantitatively
made between the proposed system and existing solutions revolves
around network overheads. Server Message Block 2 (SMB 2) is an
existing solution to network file transfers, and is used for network
overhead comparisons.

Table 22 details the components and size of a Server Message
Block 2 NEGOTIATE request. Table 23 details the components and
size of a proposed Connect request, which performs an equivalent
function.

Component Size (bytes)
Zero 1
StreamProtocolLength 3
Total ‘ 4

Table 17: SMB 2 Direct TCP header

Component Size (bytes)
Protocolld

StructureSize

CreditCharge

Status

Command
CreditRequest/CreditResponse
Flags

NextCommand

Messageld

Reserved

Treeld

Sessionld

Signature

Total
Table 18: SYNC packet header

0 W 00 R NN R NN R

—_
[=)}

=
N

Component Size (bytes)
StructureSize 2
DialectCount 2
SecurityMode 2
Reserved 2
Capabilities 4
ClientGuid 16
ClientStartTime 8
Dialects 2..10
Padding 0..8
NegotiateContextList (variable)
Total \ 46

Table 19: SMB 2 NEGOTIATE request



Component | Size (bytes)
ContextType 2
DataLength 2
Reserved 4
Data (variable)
Total ‘ 8

Table 20: SMB 2 NEGOTIATE_CONTEXT

Component Size (bytes)
HashAlgorithmCount 2
SaltLength 2
HashAlgorithms 2
Salt (variable) 16
Total ‘ 22

Table 21: SMB 2 PREAUTH_INTEGRITY_CAPABILITIES

Component Size (bytes)
Direct TCP header 4
SYNC packet header 64
NEGOTIATE request 46
NEGOTIATE_CONTEXT 8
PREAUTH_INTEGRITY_CAPABILITIES 22
Total 144

Table 22: SMB 2 NEGOTIATE packet size

Component Size (bytes)
UTF-8 command value 1
Colon 1
Supported versions 1.n
UTF-8 newline 1
Total 4.n

Table 23: Proposed Connect request components

As demonstrated by the this comparison, SMB 2 requires 144
bytes to negotiate a new connection, with supported encryption
algorithms. The proposed system only requires 4 bytes, as it uses
a single encryption algorithm for a given version. Both protocols
have the potential for larger initial packets, if they support more
versions and features. SMB 2 would add an additional 30 bytes (at
least) for additional encryption algorithms. The proposed system
requires at minimum, two bytes for an additional version.

Table 24 compares the sizes of various commands as specified
by SMB 2 and the proposed protocol. This comparison effectively
demonstrates the trade-off between simplicity and variability, as the
proposed system is efficient, and relies on whole version changes
for any variability. On the other hand, SMB 2 is highly variable and
configurable for each connection, though it becomes bloated as a
consequence.

It should be noted that file paths and data are excluded from the

calculations, as these are both UTF-8 strings and will be variable.

Command | SMB 2 size | adar size
Connect 144 4
Create 140 25
Read 116 23
Write 116 69
Total \ 516 | 121

Table 24: Comparison of equivalent command sizes in bytes

However, SMB 2 utilises a Fileld structure which is 16 bytes to
describe a file or folder when performing read and write operations
instead of a path string. The proposed protocol always uses the full
path to avoided the statefulness of maintaining identifiers, though
this will add to the listed size. However, as this comparison is
focusing on the fixed overheads introduced by the protocols, it has
been omitted in this case. Additionally, this is user-controlled and
naturally variable, so is not useful to compare here.

Also not included is any actual file data, as this is inherently vari-
able. The proposed solution encodes byte-for-byte and introduces
no additional variable overheads if no packets are lost, thus it is
not relevant for this comparison.

Overall, it can be seen that the proposed implementation is no-
tably more efficient, as it utilises a simple architectural design that
does not encapsulate packet data with layers of headers. In compar-
ison, a SMB 2 packet may have as many as 5 layers of encapsulation,
as demonstrated by the NEGOTIATE request in Table 22.

Furthermore, SMB 2 is an inherently client-server protocol, whilst
the proposed protocol is fully distributed and decentralised. This
aids in the reliability of the system, as it does not depend on any
one particular peer, either for coordination or data. This also allows
the user data to be easily distributed automatically, without user
intervention to manually move data between different servers.

As the proposed system utilises network coding for storing data,
it achieves a similar redundancy effect as can be achieved by RAID.
However, as the peers are distributed physically across the network,
and each have their own host device, they can protect against many
more effects than RAID.

A RAID is capable of protecting against partial data corruption
on a single drive, or a drive failure. It cannot protect against physical
damage to the host device that affects all drives. For example, a
malfunctioning host power supply, or a liquid damage flooding the
entire host device. In comparison, the proposed system achieves
redundancy by distributing the storage drives amongst several
hosts, each of which can be physically distributed.

This minimises the affect that a single host failure has on the
overall networks operation. If the RAID host is offline, the entire
array is unavailable, meanwhile if a peer fails the proposed network
should still be operation with the remaining peer devices.

Additionally, the user does not need to select the RAID configu-
ration of the installed drives, nor match the drive capacity in any
way. The proposed protocol can integrate into an existing host Op-
erating System, as demonstrated by the reference implementation,
since it does not require byte- or block-level access to the individual
drives.



6.1 Limitations

Several limitations must be noted for the proposed protocol. Many
of them are currently only applicable to the reference implemen-
tation, and should be resolvable by an improved implementation.
Others are trivial and could be resolved by an updated protocol
revision. Some are genuine restrictions of the design goals for a
decentralised and distributed system, and are not easily resolved
without additional complexity.

6.1.1  Network coding library. The chosen network coding library
is a simple implementation in Python, and does not make use of the
full performance of the processor. This severely limits the encoding
and decoding performance. As previously mentioned, this is not
a technical limitation of network coding, and can be effectively
resolved by an improved implementation.

However, as part of this issue, the protocol specifies that each
byte of a file is encoded as a symbol, which results in large gen-
eration sizes. For example, files larger than c. 300 bytes take over
10 seconds to encode on a modern processor (AMD Ryzen 5 3600).
This appears to be a dependent factor for network coding imple-
mentations in general.

6.1.2  Reference implementation. The overall performance of the
reference implementation is limited by the performance of the
Python interpreter environment. This restricts the possible com-
pute performance comparisons that could be made to the existing
solutions of both SMB 2, which is typically part of the Operating
System, and a RAID, which typically uses dedicated hardware.

Whilst the reference implementation is designed to be threaded,
it is currently restricted by the Python interpreters Global Inter-
preter Lock system that prevents true concurrent execution on
multiple threads. Hence, there is the potential for unforeseen race
conditions to emerge when implemented with parallelism.

Furthermore, the reference implementation does not fully imple-
ment the protocol as described, hence unforeseen issues may arise
when attempting to implement the complete protocol. Most key
aspects have been implemented and tested in an attempt to avoid
this situation, and to guide the design of the protocol in a flexible
and permissible manner.

Finally, the reference implementation stores an overabundance
of symbols for each file, such that a single peer is guaranteed to
be able to fully decode the file. This is an obvious waste of storage
capacity, and differs from the specified design of the protocol. The
protocol has not been rigorously tested as designed, and though
it should theoretically not introduce any errors, unforeseen issues
could arise regarding the reliable availability of data to the user.

6.1.3 Data distribution. As the user data is inherently distributed
across the network, access times to data will be limited by the la-
tency of a Round Trip Time across the network. File read bandwidth
will also be limited to the available network bandwidth, which is
expected to be lower than that of internal storage drives.

Whilst it is possible to fully decode a file data after distribution
amongst peers, it is dependent on enough symbols being retrieved
from the peers. These symbols need to be sufficiently independent
from each other to provide meaningful data whilst decoding, such
that it is important to avoid identical replication of these symbols
amongst the peers. There is no designed mechanism to perform

this, and it is left to the implementation and individual hosts to
determine a method of randomising which symbols they store. If
not enough unique symbols are retrieved, the file will be corrupted
when attempting to read the data.

A certain level of redundancy should be chosen by each peer,
such that one or more peers may be unavailable and the full file
data be retrievable. However, if too many peers are unavailable, or
their data corrupt, then data corruption will occur when attempting
to read the file data.

6.1.4  File system. The protocol as designed does not seek to im-
plement any modern file system features, such as symbolic links or
access control. These are ignored, and it is intended that any imple-
mentation or system will use the protocol as a base for this higher-
level functions. Alternatively, these features are not expected to be
utilised by a simple single-user system for general data storage, and
so were not necessary to the reference implementation and design.

Compatibility with various applications and systems has not
been extensively tested, with notable issues observed when using
Microsoft Office products, such as Word. Their interactions with the
file system are complex and not fully supported by the Windows
Projected File System. Hence, they cannot be utilised with the
proposed system during editing of the documents.

6.2 Future work

There is potential for an improved reference implementation that
addresses the limitations of the current implementation. For ex-
ample, implementing all design features, such as encrypting TCP
data with a public-private key pair. An implementation optimised
for compute performance with suitable parallelism would enable
effective design guidance and enable additional comparisons to
existing solutions.

Investigating techniques to improve the compute performance
issues of network coding with large generation sizes would result
in notable improvements to this application of network coding for
storage. For example, optimising the implementation for large gen-
eration sizes with a fixed symbol size, or using larger symbols sizes
such as 4 bytes each, or splitting larger files into several individually
encoded chunks.

There are also theoretical and practical optimisations for the
amount of stored symbols for each peer in a network. This could
be set statically, or dynamically optimised based on several factors,
including frequency of usage for particular files.

The protocol as designed is highly simplistic and does not seek
to implement any file system features, such as symbolic links or
access controls. Whilst these features are best left to the underlying
Operating System and file system, it could be useful to communicate
this attributes via the protocol.

Improving application compatibility for complex interactions
with the file system, such as Microsoft Office documents, will im-
prove the general usability of the reference implementation. This
may require modification of the protocol as designed to support
additional features and operations.

7 CONCLUSION

Overall, it can be seen that the proposed protocol provides effective
file data transfers over a network, with a simpler configuration and



implementation than existing protocols. It also provides equiva-
lent and even improved features compared to traditional host-level
redundancy solutions.

These improvements are possible due to the integrated archi-
tectural design and use of network coding for both transmission
and storage of user data in a decentralised and distributed manner,
along with automated management and operation, without any
complex configuration requirements.
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